When visualising genomics data, it is sometimes useful to employ variable scales to zoom in on important features. In other words the genomic coordinate scale can be a function of features in the genome, which in R are usually encoded as GRanges objects. ggscaleRanges makes ggplot2 coordinate transformations from GRanges (or IRanges) objects in one line of code. These can be used to make ggplot2 or ggbio plots of data from genes or genomic regions.
1 - Make a dataframe that maps input coordinates to transformed coordinates by calling ggscaleRanges()
with a GRanges or IRanges object, and supplying a function that will be used to scale all the range segments. e.g.: mappings_dataframe <- ggscaleRanges(gene_exons, transFun = sqrt)
ggscaleDistToRanges()
also creates such a dataframe but the scale will be a smooth function of proximity to GRanges rather than of the range lengths.
2 - In the ggplot call, make a scale transformation object using approxfun_trans()
, providing it with the previously generated coordinate mapping dataframe as an argument, e.g: scale_x_continuous(trans=approxfun_trans(mappings_dataframe))
Additional arguments (…) are passed to approxfun()
3 - Optionally, a track linking the old to the new scales can be generated using makeSLinkTrack()
, which takes the mappings dataframe and returns a ggplot object. Additional arguments (…) are passed to ggplot2::geom_segment
.
Load libraries:
knitr::opts_chunk$set(echo = TRUE, fig.width = 12, fig.height = 8)
library('ggbio')
library('GenomicFeatures')
library('rtracklayer')
library('scales')
library('reshape')
library('AnnotationHub')
source('ggscaleRanges.R')
Load transcript annotation for human and RNA-seq coverage trace (‘score’ is the RNA-seq coverage):
ahub <- AnnotationHub()
txdb<-ahub[["AH52258"]]
gtxs <- transcriptsBy(txdb, by = "gene")
gexons <- exonsBy(txdb, by = "gene")
texons <- exonsBy(txdb, by = "tx")
mySession <- browserSession()
genome(mySession) <- "hg19"
query <- ucscTableQuery(mySession)
tableName(query) <- "wgEncodeCshlLongRnaSeqGm12878NucleusPapPlusRawSigRep1" #nuclear RNA, + strand
Interesting features in genomics data are tiny compared to the surrounding sequences. We can’t clearly see read coverage in all exons in a gene from RNA-seq data, for example the RNA-seq coverage of NASP shows a different 3’ and 5’ extremities to the annotation, and delayed splicing of some introns, which cannot be easily discerned.
Get transcript models for gene NASP from the annotation and get a subset of the coverage data around it +/- 2000 nt:
GENE="4678" # entrez ID
FLANKING = 1000
gn_exons <- gexons[[GENE]] # flat exon list
gn_transcript_IDs <- gtxs[[GENE]]@elementMetadata$tx_id #get transcript IDs for gene ensgn from gtx
gn_txmodels <- texons[gn_transcript_IDs]
gn_range <- range(gn_exons)
# function to insert zero-scoring granges in the gaps in a granges object with a 'score' mcol
gapScoresToZero <- function(gr){
grGaps <- gaps(gr)
grGaps <- grGaps[strand(grGaps)==strand(gr)[1] & seqnames(grGaps) == seqnames(gr)[1]]
grGaps <- grGaps[queryHits(findOverlaps(grGaps, range(gr)))]
mcols(grGaps) <- data.frame(score=0)
gr <- c(gr, grGaps)
return(gr[order(start(gr))])
}
rng <- gn_range
start(rng)<-start(rng)-2*FLANKING
end(rng)<-end(rng)+2*FLANKING
range(query) <- rng
cvrg<-granges(track(query), use.mcols = T)
strand(cvrg)<-strand(rng)
cvrg <- gapScoresToZero(cvrg) # will plot coverage of gaps between granges as zero
Plot coverage and gene models at actual scale:
xlim <- c(start(gn_range) - FLANKING, end(gn_range) + FLANKING )
BRKS = c(0:1000)*2000 + round_any(start(gn_range), 2000) - 2000
unscaled_gm <- autoplot(gn_txmodels) + scale_x_continuous(breaks = BRKS,
labels = trans_format(ggbio:::trans_seq_format('Mb'), math_format(.x))) +
theme_bw() + theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
coord_cartesian(xlim = c(start(gn_range) - FLANKING, end(gn_range) + FLANKING ))
unscaled_bg <- autoplot(cvrg, geom = "step", aes(x = start, y = score)) + theme_bw() +
coord_cartesian(xlim = c(start(gn_range) - FLANKING, end(gn_range) + FLANKING ))
tracks_all <- tracks(list(unscaled_bg, unscaled_gm), xlim = xlim,
heights = c(1, 0.7),
main.height = unit(0.8, "npc"),
scale.height = unit(2.8, "lines"))
print(tracks_all)
ggscaleRanges()
makes a ‘mappings’ dataframe that maps pre-transformed coordinates to post-transformed coordinates, which can be given to approxfun_trans()
to generate a scale transformation in ggplot2. The unit whose length is used as input to the transformation function is ‘segment’, which are the disjoined exons / introns over all transcript models for the gene. (See GenomicRanges::disjoin()
)
Scale all transcript segments to cube-root length.
mappings <- ggscaleRanges(gn_exons, transFun = function(x){x^(1/3)})
## [1] "cant unlist gm; attempting without unlisting it. Original error: Error in getListElement(x, i, ...): GRanges objects don't support [[, as.list(), lapply(), or unlist()\n at the moment\n"
unscaled_gm <- autoplot(gn_txmodels) + scale_x_continuous(breaks = BRKS,
labels = trans_format(ggbio:::trans_seq_format('Mb'), math_format(.x))) +
theme_bw() + theme(axis.text.x = element_text(angle = 45, hjust = 1))
scaled_gm <- autoplot(gn_txmodels) + theme_bw() +
scale_x_continuous(trans = approxfun_trans(mappings))
scaled_bg <- autoplot(cvrg, geom = "step", aes(x = start, y = score)) + theme_bw() +
scale_x_continuous(trans = approxfun_trans(mappings))
s.link <- makeSLinkTrack(mappings, linetype='dashed')
tracks_all <- tracks(list(scaled_bg, scaled_gm, s.link, unscaled_gm), xlim = xlim,
heights = c(1, 1, 0.5, 1),
main.height = unit(1.5, "npc"),
scale.height = unit(2.8, "lines"))
print(tracks_all)
Ranges can be scaled with different functions for gaps (for the combined gene models, gaps = constitutive intron regions) with the transFunGaps argument.
Scale length to 1 for exonic segments and 2 for intronic, by providing ggscaleRanges with functions that return 1 and 2 respectively:
mappings <- ggscaleRanges(gn_exons, transFun = function(x){1}, transFunGaps=function(x){2})
## [1] "cant unlist gm; attempting without unlisting it. Original error: Error in getListElement(x, i, ...): GRanges objects don't support [[, as.list(), lapply(), or unlist()\n at the moment\n"
unscaled_gm <- autoplot(gn_txmodels) + scale_x_continuous(breaks = BRKS,
labels = trans_format(ggbio:::trans_seq_format('Mb'), math_format(.x))) +
theme_bw() + theme(axis.text.x = element_text(angle = 45, hjust = 1))
scaled_gm <- autoplot(gn_txmodels) + theme_bw() +
scale_x_continuous(trans = approxfun_trans(mappings))
scaled_bg <- autoplot(cvrg, geom = "step", aes(x = start, y = score)) + theme_bw() +
scale_x_continuous(trans = approxfun_trans(mappings))
s.link <- makeSLinkTrack(mappings, linetype='dashed')
tracks_all <- tracks(list(scaled_bg, scaled_gm, s.link, unscaled_gm), xlim = xlim,
heights = c(1, 1, 0.5, 1),
main.height = unit(1.5, "npc"),
scale.height = unit(2.8, "lines"))
print(tracks_all)
Introducing abrupt scale-changes might not be desirable in some cases, e.g. when it makes the exon boundary coverage drop-off appear sharper than it is. Therefore scale can be smoothly increased with proximity to range or point of interest, e.g. called peaks in ChIP-seq data, by using ggscaleDistToRanges()
instead of ggscaleRanges()
to generate the coordinate mapping dataframe. Scale inflexion points are flagged, and within a range the maximum scaling is uniformly applied.
Play with ggscaleDistToRanges()
and makeSLinkTrack()
, and use ggplot to improvise a scale visualisation:
gn_points <- gn_exons
end(gn_points) <- start(gn_points) # condense ranges to just exon start points
mappings2 <- ggscaleDistToRanges(gn_points, maxprox = 210, flanking = FLANKING, minprox = 10) # 200 nt left / right of each range are magnified
## [1] "cant unlist gm; attempting without unlisting it. Original error: Error in getListElement(x, i, ...): GRanges objects don't support [[, as.list(), lapply(), or unlist()\n at the moment\n"
all_xlims <- c(min(mappings2$pre), max(mappings2$pre))
unscaled_gm <- autoplot(gn_txmodels) + scale_x_continuous(breaks = BRKS,
labels = trans_format(ggbio:::trans_seq_format('Mb'), math_format(.x))) +
theme_bw() + theme(axis.text.x = element_text(angle = 45, hjust = 1))
scaled_gm <- autoplot(gn_txmodels) + theme_bw() +
scale_x_continuous(trans = approxfun_trans(mappings2))
scaled_bg <- autoplot(cvrg, geom = "step", aes(x = start, y = score)) + theme_bw() +
scale_x_continuous(trans = approxfun_trans(mappings2))
s.link <- makeSLinkTrack(mappings2, bottom_margin = 0.25, inflexions = 'positive', alpha = 1, linetype = 'dashed')
s.link2 <- makeSLinkTrack(mappings2, bottom_margin = 0.25, alpha = 0.02, invert = T)
tickmarks <- ggplot() +
geom_point(data = data.frame(ticks = c(0:10000) * 25 + start(gn_range) - FLANKING), # small crosses every 25 nt
aes(x = ticks), y = 0, shape = 3) +
geom_point(data = data.frame(ticks = c(0:1000) * 1000 + start(gn_range) - FLANKING), # large crosses every kb
aes(x = ticks), y = 0, shape = 3, size = 5) +
scale_x_continuous(trans = approxfun_trans(mappings2)) +
ylim(c(-0.5,0.5)) + theme_null()
tracks_all <- tracks(list(s.link2, scaled_bg, scaled_gm, tickmarks, s.link, ggplot() + theme_null(), unscaled_gm),
xlim = all_xlims, heights = c(0.3, 1, 0.7, 0.2, 0.3, 0.08, 0.7),
main.height = unit(1.5, "npc"), scale.height = unit(2.8, "lines"))
print(tracks_all)